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LOW PERIODICITY LATTICE FOR THIRD GENERATION LIGHT
SOURCES: AVOIDANCE OF DYNAMIC APERTURE REDUCTION BY
SEXTUPOLE COMPENSATION

Yu. Senichev, ISA, Aarhus University, Denmark

1 INTRODUCTION A (k2 + kj)l/z. Already in the first order of the reso-
The classic ring structure of a number of identical achror{]l‘jm];e ihio?iv 0:_31 Shle ie;;uq_c;:g iﬁﬂﬁ;:gﬁggzzﬁzgzs
” H h hl 1 1 I f Ty y -_ ) b) ) b) 7- .

mat cells arranged in a highly symmetric circular form nd their order grow with the the ordéf as2V+'. In

has been used in the vast majority of synchrotron Iigh? . - : L
sources. However, lattices with small electron emittance"’lscnqn'angIe vangbles ﬂ_]e averaging Hamiltonian of the
require smaller dispersion function and stronger sextupolgéOtlon can be written as:
are needed in order to correct the chromaticity. In the same
time, as is well known, the sextupoles dramatically de- H (I, Iy, 0z, 0y) =
crease the dynamic aperture due to their nonlinear action.

5 Lon1/2 1/2
To avoid the influence of sextupoles on the dynamic aper- (k2 + k7) AL+ (k2 +£7) AT+

ture the multi-family sextupole schemes are used. But, un- Ky ky

fortunately, all of them do not give complete compensation. 2 (ks ey o) I::c/QI;;y/Q cos (ky 0z + kyoy)

In particular, for third generation synchrotron light sources 5 5

the residual sextupole component becomes the stronger FCelz + Caylaly + Gyl @)

factor in comparison with errors and misalignments ang\here the Fourier harmonig,_ , determines the effec-
zVY

this factor limits the dynamic aperture. Thus, the searcfie sirength of the resonanégrv, + kyv, = g under the
of new solutions to decrease the influence of the sextupolggtuningA. It is proportional to the integral

has remained to be actual. But let us ask ourselves, if we

can not suppress effectively the influence of sextupoles, s

may be we shpuld prqperly use the. non-linearity of sex- (Mg kg a) ~ / 552/2/35@,/2_;{5 (5) eilhenethyny) gg.

tupole to stabilize motion? Such an instrument can be the 50

non-linear tune shifts. Obviously, to realize this idea we s gs @)
should step aside from the classic ring structure, since¥herétz.y = J,, 3,5 is the phase advance. Several for-
does not permit us to control the sign and the magnitude §talisms of the perturbation theory up to the second or-
tune shift independently on the tunes themselves. We préer [3, 4] have been used to derive the expression of the
pose a lattice consisting of many arcs containing combinddne shifts¢z, ¢y, ¢, of the sextupoles. They all are the
function (or usual) magnets and focusing (and defocusin@nctions of the effective strengtr; of the resonance and the
quadrupoles separated by identical optical channels COfetuningly vy, = F [Pre ey . Thus, when we

sisting of either one, two or more dispersionless straight ko vethyvy =

sections[1]. A significant advantage of such a design is tfRompPensate the influence of the sextupoles, the strength

ability to separate the functions of the arcs and the straigAf e resonance is suppressed proportionally to the first

sections. The periodical part of the arcs is a pseudo-secoR@Wer of hzkz,ky,qv while the tune shifts are decreased

order achromat joined with the straight sections through@hkm,kwq| .

dispersion suppressor and it differs from the second order

achromat[2] by non-zero chromaticity. The lattice has on2.1 Lattice classification

focusing and one defocusing family of sextupoles located . - .
- . ._Let us consider the case of a third integer resonance in one

on the periodical part of the arc. Varying the chromatic- o o

) . . rt)lane. In the Hamiltonian system, where the friction force

ity of arcs by sextupoles and the chromaticity of straigh

sections by quadrupoles and keeping the total chromaticgs/ _absent, there are two types of fixed points. The fixed

. . .~ point I, 7, is the saddle, if the roots of the characteristic
equal zero, we can modify the tune shift at any workin . L
guation are real and it is the centre, when the roots are

point, imaginary. The point itself is derived from the equations
2 SEXTUPOLE RESONANCES WITH A
NONLINEAR TUNE SHIFTS A+ Ehgoqli/g cos 35 + 26 Ly + Coyl, = 0 (3)
In the proposed lattice the highest multipole is a sextupole. sin3p; = 0.

The resonance arises under the condiio, v, +kyvy = The last gives us plenty of combinations with the fixed

* Email: senichev@dfi.aau.dk points depending on the ratio between the parameters
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hsog, Cz and ¢, ,. The influence of the non-linearity is onance at all and it behaves as quasi-isochronous sys-
specified by the discriminar® in the expression: tem. The phenomena of quasi-isochronism for the non-
linear resonances was investigated by Nekhoroshev [5].
2l 5 - Let us apply Nekhoroshev’ criterium to our two dimen-
1/2 _  9N30gCOSOY, , 1 /9 _ sional system. The non-resonant part of the Hamiltonian
L= 8, TiG \/4h3°q 86 (At Gealy) ooy (Lo 1) = CoI2 + oy L1, + C, I2. The vector of fre-
S o ) (4) quencies passing through the point of the resonant surface
. Substltut.mglx,% in thg cha_racterlstlc equation, we de-yr _ (I7,17) s w = (2Ge T + CoyLy; 2G, Iy + CoyIy).-
fine what kind qf fixed pointitis. _ The quasi-isochronism condition by Nekhoroshev is ful-
Fro_m the lattice design point of view there are three infjjjeq, whenk, (QCII; + Czng) +k, (2@[; + @y[g) —
teresting cases; < haoq; Gz ~ haog @NAC; > hsog- 0 and (k2 + Caykoky + (k2 = 0. The solution is
The lattices with the small non-linearity < hso, are oy /G, _ o
classified among the first or second generation synchrotrai = — —2¢,— - |fthe non-linearity in both planes
light sources. The system has one centre and three saddhsve the same sign add, ¢, > (jjy we get the absolutely
Since the non-linearity is negligibly small, the dynamicconvex (or concave) surface. They both have name of the

= 5 . -
aperture is determined by the value bf < —3,21‘?0(1) , Zteczp scurfﬁ;SéTt:gss,;rr;zn;gﬂmum stable regionis when all
xSy Sxy .

when the motion is still stable. Under the resonance condi-
tion A = 0 the centre is degenerated into the saddle and the

stable area shrinks into zero. In such a lattice the working 3 THE LATTICES WITH (x > Hjoq

point is kept as far from the resonance as possible. Usu- i . ) i
ally these lattices have a small value/ah, because the What kind of lattice is needed in order to have a possi-

sextupoles are very weak and there is no problem with ﬂpi'"ty to adjust the detur)ings, the nonlinear tqne shift
dynamic aperture. Ce» Cey> Gy and the effective sextupole harmoriig, ., 4

The lattices with¢, ~ hso, have the moderate non- separately. From our point of view the only appropriate

linearity. In common case the system has four islands wiﬂﬁlmce IS the. lattice V\.'ith the separatgd functions of the arcs
four centres and three saddles. Such a lattice is used d the straight sections. Such a lattice has some number of
the second and third synchrotron light sources, where tﬁgperperiqu consist'ing of th_e arc and the S”aigh_t sections.
sextupoles have much stronger gradient in comparison WiFtP‘Ch arc mcludes eight periodical cells, contamm_g com-
previous generation. To compensate sextupoles the mula'-ned fu_nctlon (or usual) bend magnets and foc_usmg (an_d
families sextupoles schemes are used. Since the tune sh gocusmg) quadrupoles. The tune of the arcs in the hori-

. 2 . . zontal and the vertical planes is integer,= 3, v, = 2.
are proportional tqh’“””“y’q| and the working points are The sextupoles are placed on arcs periodically . To a first
chosen far away from integer tune, the non-linearity are P P P y-

decreased even faster than the third harmonic. Really tRRProximation in this conditiony, x,,, — 0 (see €q.2),
dynamic aperture is determined by how successful we haya c€ each —th sextupole is compensated py + 4) — th
che horizontal and byn + 2) — th in the vertical planes

been in simultaneous adjustment of the appropriate valu X . . S
correspondingly. However, since again the tune is integer,

of ¢, andhsg,. ) . A ; ) A
The lattices with, > hso, have to be classified as athe nonllrgleartune shift can be varied in aywde region, since
|Pka sy q| — 0@ndkgvy + kyvy — g — 0 simultaneously.

special lattice, since it is a case, when the valugsgjf is had CqT >
effectively suppressed, but the non-linearity remain to b‘ghe total chromaticity of whole ring is adjusted to zero, but

under control and strong. It is obvious from (4), if the sigrin€ @rc itself has a positive chromaticity, compensated by
of the detuningA coincides with the sign of the tune shift the negative chromaticity of the straight section. Changing

¢, the discriminant s negative and the system has only ofi@® chromaticity of the arc, we can adjust the required sign
centre at, = 0 . Therefore this case corresponds to th&"d value of the non-linear tune shifts. The working point
maximum stable region and the lattice with these features§41d the detunings of whole ring is modified by the tune of

the most hopeful for the third and fourth generation sourcd1€ Straight section, while the arc remain to be invariable.
Figure 1 shows the dynamic aperture tracking of

ASTRID 2[1] versus the tune in the vicinity of the third
integer resonance, = 9.33, when the tune shiff, =

So, in order to get the maximum stable region the sigh00, the effective harmoniéso, = 0.1 and the detuning

of the non-linearity(,, has to be the same as the detunequals to -0.02; -0.01 and 0.01 correspondingly. During
ing A. However, we can see from (4), &, has the small change of the detuning the system runs through three
opposite sign with the tuné\, then under some ampli- stages, what is exactly in accordance with the Hamiltonian
tude of oscillation in the vertical plang, the total de- described above. Inthe early stage the system has four sep-
tuning Asotat = A + (oI, can make the discrimi- arated islands with four centres and three saddles. In the
nant D > 0. It means that the two dimensional vec-middle stage all four islands are surrounded by the stable
tor remains to be on the resonant surface. In otherajectories. After change of the detuning sign the system
words the non-linear system is unable to leave the rebas one fixed point. In case of a negative tune shift the

2.2 Nekhoroshev’s criterium
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3.1 CONCLUSION

The emittance in this lattice is much smaller, than in a cir-
cular machine with the same number of magnets, and the
dynamic aperture has a similar value with a lower sensitiv-
ity to third order resonances.

The author is very grateful to E.Uggerhoj, S.P.Moller for
fruitful discussion and to N.Golubeva, S.\olin for cooper-
0005 oo ation in investigations of the proposed lattice[6].
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